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     Abstract 

 

With the continuous downscaling of CMOS technologies, the issues of soft errors and 

reliability are set to become increasingly challenging. In order to detect and correct these 

errors and enhance reliability of the circuits, this paper describes a design of two interleaved 

Double-Adjacent-Error-Corrections (DAECs) for Error Detection and Correction (EDAC), 

using the Hsiao Code and Cyclic Redundancy Code (CRC). Hsiao codes are modified version 

of Hamming codes which are widely used in modern systems. A cyclic redundancy 

check (CRC) is a non-secure hash function designed to detect accidental changes to digital 

data in computer networks. It is characterized by specification of a generator polynomial, 

which is used as the divisor in a polynomial long division over a finite field, taking the input 

data as the dividend. The remainder becomes the result. CRCs are particularly easy to 

implement in hardware and are therefore commonly used. We also propose two storage 

formats and algorithm designs that can manage and store the 48-bit codeword in 8-bit and 16-

bit memory devices, a typical satellite scenario where board space is scarce. We use Verilog, 

C++, and ModelSim to create and test our designs. 

 

 

 

Introduction 

 

As the geometry of the semiconductors gets smaller in the fast-growing CMOS industry, the 

reliability of memory devices is difficult to maintain as they are at threat due to external 

influences such as an electrical surge and ionizing radiation. With the growing reliability 

concerns, detection and correction of soft errors becomes critical.   

 

The existence of soft errors in System on Chips (SoC), especially in embedded memories, is 

already well known for a long time as a result of interaction with charged particles or due to 

radiation. A soft error is a type of error where a signal or datum is wrong. Errors may be caused 

by a defect, usually understood either to be a mistake in design or construction, or a broken 

component. A soft error is also a signal or datum which is wrong, but is not assumed to imply 

such a mistake or breakage. One cause of soft errors is single event upsets from cosmic rays.  

 

Single Event Errors (SEU) do not destroy the circuits involved, but they can cause errors. In 

space-based microprocessors, one of the most vulnerable portions is often the 1st and 2nd-level 

cache memories, because these must be very small and have very high speed, which means that 

they do not hold much charge. Often these caches are disabled if terrestrial designs are being 

configured to survive SEUs. 
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There are several prominent single error correction and double error detection (SEC-DED) 

EDACs proposed, such as the Hamming, Bose– Chaudhuri–Hocquenghem (BCH), and Hsiao 

Codes. The Hsiao Code EDAC has the best performance for speed, hardware requirement, and 

three- and four-bit-error detection. Its higher three- and four-bit-error detection rates reduce the 

probability of an erroneous EDAC correction. 

 

The most-common error-correction codes use Hamming or Hsiao codes that provide single-bit 

error correction and double-bit error detection (SEC-DED). Other error-correction codes have 

been proposed for protecting memory – double-bit error correcting and triple-bit error detecting 

(DEC-TED) codes, single-nibble error correcting and double-nibble error detecting (SNC-

DND) codes, Reed–Solomon error correction codes, etc. However, in practice, multi-bit 

correction is usually implemented by interleaving multiple SEC-DED codes.  

 

Early research attempted to minimize the area and delay overheads of ECC circuits. Hamming 

first demonstrated that SEC-DED codes were possible with one particular check matrix. Hsiao 

showed that an alternative matrix with odd weight columns provides SEC-DED capability with 

less hardware area and shorter delay than traditional Hamming SEC-DED codes. More recent 

research also attempts to minimize power in addition to minimizing area and delay. 

 

Our approach is to design two fast EDACs that are capable of correcting and detecting these 

errors. The first EDAC uses the Hsiao Code and requires an encoder matrix. The second EDAC 

uses a CRC polynomial that requires an encoder matrix. Then interleaving of these two Double-

Adjacent-Error-Correction (DAEC) EDAC designs are carried out. The paper also proposes a 

storage format and algorithm designs to manage and store the 48-bit codeword in 8-bit and 16-

bit memory devices. 

Literature Survey 

 

In this section, a brief introduction of the work that has been done with respect to this field is 

discussed. 

The interleaving of Hsiao Code and CRC-based EDAC approaches are explained in this paper 

[1]. It shows promising results with minimum hardware requirements. It also proposes an 

algorithm to how to manage the 48-bit codeword when board space is scarce. The storage 

format and algorithm allow us to support this class of EDACs with minimum hardware support. 

The research study on two of the most popular linear ECC codes, Hamming and ECC is shown 

this paper [2]. It explores the efficiency of their application in embedded systems. It shows the 

results that Hamming codes are simpler to implement and display better efficiency for smaller 

data lengths while Hsiao code are more complex but have better performance especially for 

larger data sizes. 

In this paper [3], the efficient implementation of error correction code (ECC) processing 

circuits based on single error correction and double error detection SEC-DED code with check 

bit pre-computation is proposed for memories. When compared with a conventional 

implementation utilizing the odd-weight-column code, the implementation based on the 
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proposed SEC-DED code with check bit pre-computation achieves reductions in the number 

of gates, latency, and power consumption of the ECC processing circuits. 

In this paper [4], designs of novel joint crosstalk avoidance and triple-error-

correction/quadruple-error-detection codes are proposed, and their performance is evaluated in 

different NOC fabrics. It is demonstrated that the proposed codes outperform other existing 

coding schemes in making NOC fabrics reliable and energy efficient, with lower latency. 

The author in [5], demonstrated a new way of constructing a class of SEC-DED codes that uses 

the same number of check bits as the Hamming SEC-DED code but is superior in cost, 

performance, and reliability. This also minimizes the hardware, thus tending to lower failure 

rate of decoders. 

The author in [6], explains the optimal generating algorithm for a matrix of equal weights 

columns and equal weights of rows. Then modifies some steps and using the modified 

algorithm for error correction, it is shown that it is efficient, fast and it s optimal in average 

cases. 

In this paper [7], The Hsiao code is applied to cache memory using FPGA programmable 

Xilinx circuits. With this implementation the size of the syndrome generator is reduced and the 

cost of error correcting scheme is also reduced compared to the traditional Hamming code-

based solution. This solution using a SEC-DED Hsiao code, increases reliability through fault 

tolerance, leading to low cost and low memory chip dimension, as this method solves the 

problem of faults by testing and correcting errors inside the chip. 

This paper [8] presents Ultrafast codes, designed for very fast encoding and decoding 

operations. Ultrafast codes offer high-speed encoder and decoder circuits, and interesting error 

coverages. These codes can also be useful to protect high-speed memories or caches. Firstly, 

they have summarized Ultrafast SEC, SEC-DED and SEC-DAEC codes, presented in previous 

works. Then, new Ultrafast SEC-xAEC-DED codes have been introduced, describing the 

design methodology and the implementation details. The results confirm that Ultrafast codes 

achieve very low propagation delays, whereas adding very reasonable increments in the silicon 

area and the power consumption. 

In this paper [9], a new SEC-DED-DAEC code is demonstrated to achieve high reliability 

protection against neutron induced soft errors in on-chip memory systems. It is showed that the 

proposed code has higher reliability than other SEC-DED-DAEC codes because it addresses 

the mis-correction problem. It is proved that the proposed code is suitable for a protection 

scheme against MCU in on-chip memory system. 

The paper [10] proposes the investigation of four SEC-DED codes with different word lengths. 

The effect of the word length on error control capability is shown. Two different hardware 

implementations: XOR tree based and LUT based, for these four Hsiao codes are explored in 

this paper. The results show that the LUT structure outperforms the standard XOR structure in 

error correction speed in most cases. 

 

Hsiao Code 

Hsiao codes, also known as single-error-correcting and double-error-detecting (SEC-DED) 

codes, are a type error-correcting code used in memory systems. They are designed to detect 

and correct errors in data that are caused by single bit errors and detect but not correct double-

bit errors. Hsiao codes are basically based on Hamming code, which is a linear error-correcting 

code that can detect and correct single-bit errors. However, unlike the Hamming code, Hsiao 

codes can also detect double-bit errors by using an additional parity bit. 



In Hsiao codes, each data bit is represented by a binary number, and an additional parity is 

added to the code to detect errors. The number of parity bits added depends on the number of 

data bits in the code. For example, if there are n data bits, then log2(n+1) parity bits are added 

to the code. 

When data is transmitted or stored using Hsiao codes, the receiver or memory system can detect 

and correct single-bit errors, but not double-bit errors. If a double-bit error is detected, the 

system will report an error and discard the data. 

Overall, Hsiao codes provide a balance between error detection and correction, making them a 

popular choice for computer memory systems where errors can occur due to various reasons 

such as electromagnetic interference, cosmic rays, or manufacturing defects. 

 

Cyclic Redundancy Code 

Cyclic Redundancy Code (CRC) is an error-detection technique used in digital communication 

networks and storage systems. It is a type of checksum that is used to ensure the integrity of 

data transmitted over a channel or stored in memory. 

CRC works by dividing the data into blocks of a fixed size and adding a checksum to each 

block. The checksum is computed by performing a polynomial division of the data with a fixed 

generator polynomial. The remainder of the division is the checksum, which is appended to the 

data block. When the data is received, the same polynomial division is performed on the 

received data, and the resulting remainder is compared to the checksum that was sent. If they 

match, the data is considered to be error-free. 

CRC codes are widely used in communication systems such as Ethernet, Wi-Fi, and Bluetooth, 

as well as in storage systems such as hard disk drives and optical discs. They are simple and 

efficient to implement in hardware and software, and can detect most errors that occur during 

transmission or storage. However, they are not perfect and can still fail to detect some types of 

errors, such as those that occur in bursts. 

 

 

Methodology 

Firstly, we design EDAC that uses the Hsiao code’s encoder matrix. Then we design a second 

EDAC that uses a CRC encoder matrix. Finally, we interleave both the EDACs to improve the 

error detection and correction capabilities of our EDACs. We also design a storage format and 

algorithm design to manage and store the 48-bit codeword in 8-bit and 16-bit memory devices. 

Design of Hsiao code’s encoder matrix 

A C++ program is used to create Hsiao Code’s matrix generator, to generate the H-matrices 

compliant with the three Hsiao Code’s rules. Another C++ program is created, a code generator, 

to take the generated matrix as the input and produce the Verilog code for the EDAC’s encoder. 

The three Hsiao Code’s rules are: 

1. Every column should have an odd number of 1’s; i.e., all column vectors are of odd-

weights. In the following, we use n to indicate the number of rows in the H-matrix, and 

r to indicate the number of 1’s in each column, which must be an odd number. • use the 

combination formula C (n, r)=((n!)/ (r! (n-r)!)) to generate all possible odd-weighted 



columns with n=8 and r=3. n=8 because the matrix has eight rows. r=3 because 3 is the 

smallest odd number next to 1, and 1 is already used in the check-bit columns. We 

therefore get a total of 56 combinations.  

2. The total number of 1’s in the H-matrix should be at a minimum.  

• We compute the 1’s in the H-matrix as (16 * 3) + 8, or 56 1s’ since the first 16 columns 

of the matrix contain three 1’s, and the last eight columns are for check-bits.  

3. The number of 1’s in each row of the H-matrix should be made equal, or as close as 

possible, to the average number, i.e., the total number of 1’s in the H-matrix divided by 

the number of rows.  

• We divide the 56 1s’ by 8 and get 7 1s’ per row. This number includes the check-bit 

in the last eight columns. 

Based on the rules above, we designed our matrix generator in C++. Figure shows the 

flowchart of our generator that works as follows:  

 

 

1. First, build a one-dimensional array to store the row indexes, 1 to 8, since the new 

matrix has eight rows. Each of the numbers refers to one of the eight rows.  

2. A 56x3 array to store all the combinations of the row indexes in the column vectors that 

each contains a 1. Since each column vector in the H-matrix has three 1’s, we choose 

the combinations of three out of the eight row indexes generated in step 1 (1 to 8) and 

store each combination in a column vector in this 56x3 array. There is a total of 56, or 

C (8, 3), such combinations stored in this array.  

3. Build one-dimensional array to store the numbers 1 to 56. This is an array of the column 

indexes of the 56x3 array generated in step 2.  



4. The column indexes to build the H-matrix as follows. Since the H-matrix has 16 

columns, not including the eight columns used for the check-bit, and each column 

contains three 1’s, we choose a combination of 16 out of the 56 column indexes 

generated in step 3 (1 to 56). If we have exhausted all the C(56, 16) combinations, then 

end the program; otherwise continue to step 5.  

5. Use the 16 indexes generated in step 4 to index into the 56x3 array, and obtain a 16x3 

sub-array. Use each of the 16 columns to build a 16x8 matrix. For example, if the first 

column is chosen, then we build a column vector in the new matrix containing eight 

rows, by storing 1’s in rows 1, 2, and 3, and 0’s in all remaining rows in this column 

vector.  

6. If all the rows in the matrix generated in step 5 contain 6 1s’ (not including the check-

bit), go to step 7, otherwise go to step 4.  

7. Print the encoder matrix, indicating that we successfully generated the matrix; then go 

to step 4 to check if we have exhausted all the C (56, 16) combinations. 

 

Design of Cyclic Redundancy Code’s encoder matrix 

Cyclic Redundancy code is another type of error detection technique used to ensure the 

integrity of data transmitted over a channel or stored in memory. For networking, the interest 

is the Hamming Distance (HD), which is the least possible number of bit inversions in a 

message that can create an error undetectable by that message's CRC-based Frame Check 

Sequence.  

We design the next EDAC based on a CRC polynomial to leverage the CRC detection 

capability. To increase the information rate, we compute the 16-bit message with an 8-bit CRC 

generator. To reduce the bit-weight in the encoder matrix, we set the CRC’s seed value to zero. 

When a two-input XOR gate has an input equal to a logical zero, its output value is equal to 

the other input’s value. Based on this Boolean state, we eliminate the XOR gates required for 

the seed value, thus reducing the bit-weight of our CRC matrix. We develop a CRC-based 

encoder matrix generator in C++ to generate our EDAC encoder matrix with these criteria.  

 

Design of an interleaved EDAC 

The EDAC uses two identical single error correction and double error detection (SEC-DED) 

EDACs configured as the even and odd encoders, syndromes, and decoders. For example, two 

Hsiao Code encoder matrices generated, or two CRC encoder matrices generated can be used 

as the two identical encoders. This configuration improves the error correction and detection 

rates. For example, if a double-bit-error has one error occurring on an even-bit, and the other 

on an odd-bit of a codeword, this error can be corrected. 

 

Codeword storage format and algorithm 

A hardware- or software-based EDAC provides methods to ensure data reliability in memory 

devices. The cost for more reliable data is lower information rate because an EDAC creates 

additional bits for error detection and correction. These extra bits are known as the check-bit. 

Depending on the EDAC implementation, the number of bits used for the check-bit varies. In 

our research, we use a 16-bit check-bit (or two 8-bit check-bits).  



When the EDAC corrects an error, the fault-tolerant memory controller writes the corrected 

codeword (message and check-bit) back to the same memory location. This process is known 

as memory scrubbing. A 48-bit codeword would need six 8-bit, three 16-bit, or one 32-bit and 

one 16- bit memory device to store the message (code or data) and the check-bit. In a scenario 

where a satellite's board space is scarce, these memory devices’ configurations are not 

desirable. Instead, we recommend using an 8-bit or a 16-bit memory device to store the 48-bit 

codewords.  

 

The algorithm for storing the message and check-bit in an 8-bit or a 16-bit memory device 

works as follows:  

1. The EDAC computes the 16-bit check-bit from the 32-bit message (data or code).  

2. The memory controller writes the 32-bit message as follows:  

• 8-bit memory device— writes the 32-bit message in four bytes.  

• 16-bit memory device—writes the 32-bit message in two 16-bit words  

3. After writing the fourth byte, the address is 0000_0003h.  

4. The controller takes the last address (0000_0003h), shifts the address value to the right by 

one bit, and inverts the address. The address after inversion is the write address for the check-

bit. In this case, the address is FFFF_FFFEh.  

5. The memory controller writes the lower byte of the 16-bit check-bit to address FFFF_FFFEh 

and the higher byte to FFFF_FFFFh. 

 

Conclusion 

In this paper, we have presented a brief review of two error detection and correction (EDAC) 

methods, Hsiao code and Cyclic Redundancy code.  The interleaving of these methods is 

discussed. The interleaving of these two methods can improve the error detection rates and 

error correction rates, is shown through this paper. This approach shows promising results with 

minimum hardware requirements. Also, managing the storage of 48-bit codeword when board 

space is scarce is discussed in this paper. 
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